
An Example of Hardware/Software 

Partitioning in SDR Systems: the Hardware 
Daniele Vogrig, Assistant Professor, DEI Brixen, July 1 2010

vogrig@dei.unipd.it



This is the second of a series of two 

talks illustrating an example of 

hardware/ software partitioning. 

• This first talk, presented yesterday by 

Carlo Fantozzi, have introduced the 

subject, the DVB-T2 system and others 

aspects

• In this talk, we will present some 

Hardware aspects with focus on the 

complete design flow

Preliminary Remark



Outline

• DVB-T2 architecture

• Hardware Scenario

• Hardware basics

• The Lyrtech Board

• Design Flow

• Results

• Future Works



DVB-T2



The DVB-T2 standard

• First version published in September 2009

• Addresses the needs of countries after they
have completed Analogue Switch-Off (ASO).

• Leverages on advances in modulation and coding technology to 
use valuable UHF/VHF spectrum freed by ASO in the most efficient 
way

• Still uses OFDM. Increased number of modes for extra flexibility.

• Improvement: rotated constellations provide additional robustness

• New FEC encoding: LDPC (Low Density Parity Check) coding 
combined with BCH (Bose-Chaudhuri-Hocquengham) coding offers 
excellent performance in the presence of high noise levels and 
interference

• Improvement: a transmitter diversity method (Alamouti coding) 
increases coverage in small-scale single-frequency networks



DVB-T2 Transmitter

• DVB-T2 transmitter requires 

a lot of computations.

• We can realize entire 

system using different 

solutions.

CRC generation

PRBS scrambling

BCH encoding

LDPC encoding

Bit interleaving

Gray mapping

Constellation rot.

Alamouti coding

Inverse FFT

Use commercial

microprocessors

(one or more)

Use commercial

microprocessors

for basic computation

AND

one or more dedicated

co-processors



System Architecture

• Co-processor

– Hardware dedicated 

only to specific function

– Optimized (not generic)

– Reduce CPU load

CPU Mem

Copro-

cessor1

Copro-

cessor2

Processor

Bus

Application Specific Integrated Circuit (ASIC)

Using which tecnology?



Hardware Scenario



Tecnology Overview

mC, mP, DSP, 

SRAM, DRAM,

SSI, … 

Programmable 

components

FPGA, CPLD

PROM, PAL, 

PLA

Standard 
Cells

Full-custom

Gate Arrays

ASIC (Application 
Specific Integrated 
Circuit)

Catalogue components



ASIC

ASIC realization

full-custom semi-custom

cell-based array-based

standard 

cells

macro 

cells

gate 

arrays

FPGA 

CPLD



Standard-cell

• Use a library of pre-designed cells (completely, up to layout 

level)

• Cells are place on multiple rows

• The interconnections are realized in the channels between 

the rows of cells

• The complete layout is sent to the foundry for the 

manufacture



Standard-cell: pro and con

Optimized performance on each individual cell
• It has been designed in order to maximize 

performance

 Full exploitation of resources
• We implement only the necessary cells

 CAD tools for the design
• Rapid development

 Library design is expensive
• Someone has to realize and to update the library 

(usually the foundry makes this, and you pay for it)

 The complete manufacturing process is needed
• Starting from the plain wafer, such as full-custom



FPGA: basic structure

Logic block: it is a pure combinational logic module (with one register 

or more) and its function is fully programmable

Switch box: allow to chose which signal are connected

logic

block

logic

block

logic

block

logic

block

switch

box

logic

block

logic

block

switch

box

local signals

global signals

programmable 

interconnection



3-input

LUT

a

b

c
flip-flop

clock

mux

y

q
d

FPGA: 

generic logic block

• The generic logic block of the FPGA is called Slice

• Programmable look-up table (LUT) : it could be configured to 

represent any 3-input logical function

• It’s possible to have a registered output

• Aux input increase the flexibility



|

&
a

b

c
y

y = (a & b) | !c

Required function Truth table

1
0
1
1
1
0
1

000

001

010

011

100

101

110

1111

y

a b c y

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

1
0
1
1
1
0
1
1

SRAM cells

Programmed LUT

8
:1

 M
u

lt
ip

le
x
e

r

a b c

FPGA: 

programming

• LUT

SRAM

• Interconnection

0 = open

1 = close



FPGA: pro and con

 You can buy the finished component and it is 
programmed directly on the field, without additional 
fabrication steps

 CAD tools like in standard-cells

 Programming phase takes only some seconds

 The component can be re-programmed (except in some 
cases)

 You have unneeded cells and interconnections

 Reduced performance (compared to the potential of 
technology)

 Non-competitive const for large numbers (20,000 ÷
50,000)



- Large Numbers

- Large scale 

production

Which tecnology?

Cell-Based

FPGA

performances,

robustness

rapid 

development,

reconfigurability

And COSTS?
- Small Numbers

- Prototypization



Hardware Prototyping



Our project

Architecture

design

High-Level

Simulation (Matlab/c++)

Hardware 

prototypization

Developing 

Board

Architecture 

Mapping

DsP/uP

programming

Design Hardware 

(FPGA)

Hardware 

Simulation

Board 

Implementation
Testing

T
H

IS
P

R
O

J
E

C
T

SoC

Development

Standard-Cell

Design
Realization F U T U R E

W O R K



The Lyrtech Board

Designed for

• public safety applications like TETRA and APCO band 

communications

• vehicular systems

• transponders

• RFID readers

• WiMAX and Wi-Fi customer-premises equipment (CPE)

• broadband data systems

• femto and pico base stations

Three distinct modules:

• RF Module

• Data Conversion Module

• Digital Processing Module



The Lyrtech Board:

Digital processing module

• GPP+DSP: TI “DaVinci” 

• FPGA: Xilinx Virtex-4 SX35 

• MCU: TI MSP430 MCU 

• 128-MB DDR2 SDRAM 

• 128-MB NAND Flash 

• Stereo audio codec

• 10/100-Mbit/s Ethernet 

• JTAG probing access

• HMI: LEDs, buttons, 

dip switches 



Data-Rate

Worst case Data rate: ≅ 61 megabits per second

TI “Da Vinci”

• GPP: ARM926EJ-S @ 297 MHz

•Neither the LDPC encoder not the iFFT can be implemented on the GPP

• DSP: T64x+ core @ 594 MHz

•Theoretically it can realize both functions

•But we need to use proprietary software developed by TI  NO GOOD!

Xilinx Virtex 4 FPGA

• Up to 450 MHz clock

• Various implementation of LDPC encoders and iFFT in literature

We decide to implement both LDPC encoder and iFFT on board’s FPGA 



Xilinx Virtex-4

XC4SX35

• Consist in an array (96x40) of Configurable 

Logic Blocks (CLBs)

• Each CLB contains 4 slices (Tot.15,360)

• Each slice contains:

• 2 flip-flops (Tot. 30,720)

• 2 programmabe 4-in LUTs (Tot. 30,720)

• Half of LUTs can be used as distributed RAM 

or shift registers (Max of 240 kilobits)

• Contains 192 XtremeDSP® embedded blocks

• Contains 192 Block RAM (Tot. 3,456 kb)

• Max of 448 I/O Pins



Virtex-4 Family

1 Gbps SelectIO™
ChipSync™ Source synch, 

XCITE Active Termination

Smart RAM 
New block RAM/FIFO

Xesium Clocking

Technology
500 MHz

PowerPC™ 405

with APU Interface
450 MHz, 680 DMIPS

Tri-Mode

Ethernet MAC
10/100/1000 Mbps

RocketIO™ 

Multi-Gigabit

Transceivers
622 Mbps–10.3 Gbps

XtremeDSP™ 

Technology Slices

256 18x18 GMACs

Advanced CLBs
200K Logic Cells



Translate

Map

Place & Route

Xilinx Design Flow

Plan & 

Budget
HDL RTL

Simulation

Synthesize

to create netlist

Functional

Simulation

Create

BIT File

Attain Timing 

Closure

Timing

Simulation

Implement

Create Code/

Schematic



LDPC encoder

• Classical structure proposed by Richardson and Urbanke*

• DVB-T2 LDPC tables are memorized in FPGA block RAMs

• Iterative core has been design and tested successfully
– Design developed using VHDL language

– Using Xilinx simulation tools and comparing results with high-
level description

• Performance:
– Max clock frequency: 110 MHz

– Use 2% of CLBs and 15% of BlockRAMs

– Encoding Time: 2,7 ms (@WC)

• In order to achieve the required data-rate, we have decided 
to implement 2 encoders in a ping-pong structure

[*] T.J. Richardson; R.L. Urbanke “Efficient encoding of low-density parity-check codes,” IEEE Transactions on Information Theory, 

vol. 47, n.2, pp. 638–656, Feb. 2001.



IFFT

• Must be run-time reconfigurable (up to 32K points)

• We adopted a pipeline architecture based on radix-2 
butterflies

• The input data width is 8 bit for real + 8 bit for imag.
– This width can be easily changed in VHDL code

• Internal data width is 10 + 10 bit 
– We also implement internal rounding for overflow control

• Performance:
– We use the LDPC encoder clock: 110 MHz

– The pipelined structure can elaborate 1 symbol (8+8 bits) 
each clock period

– Maximum Latency: 597 ms

– Use 20% of CLBs, 56 BlockRAMs (30%) and 28 
ExtremeDSP (15%)



Overall system

• Some FIFOs are added in order to obtain the correct data-

flow

• At the output of IFFT, an bit reorder module is added

• We have designed also the needed control blocks for the 

system

• The entire system is described using VHDL language

• When possible, we have maintained a generic VHDL 

structure, in order to maximize the portability of description

LDPC enc.

LDPC enc.
FIFO IFFT

Bit

Reorder

C O N T R O L B O C K S

FIFO



Implementation

• Implemented on the XC4SX35 FPGA the entire system uses about 
65% of BlockRAMs and less then 30% of the other structures.

• A simulation of the hardware realization 
has been done and compared with high 
level model of the system

• We have planned a hardware testing 
(to be done)
o We need additional structure to support 

bi-directional communication between 
FPGA and TI “DaVinci”

Schematic view in ISE Xilinx Design Tool

Implementation view

in ISE Xilinx Design Tool



Future Work

• Complete the system

– Add communications block for data-transfer 

between “Da Vinci” and FPGA

– Add others DVB-T2 block (i.e. BCH encoder, etc)

– Define a full testing strategy

• Realize using standard-cell technology

– Design Porting

– Re-design of dedicated block (i.e. multipliers)

– Microprocessor realization



Thansk!



An Example of Hardware/Software 

Partitioning in SDR Systems: the Hardware 
Daniele Vogrig, Assistant Professor, DEI Brixen, July 1 2010 


