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Size of the Electronic Market
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Working at the length scale of 1-100 nm to 
create materials, devices, and systems with 
fundamentally new properties and functions
because of their nanoscale size.

from www.nano.gov

Definition of Nanotechnology 
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70 nm Gate Length FET

70 nm
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ENIAC - the First Electronic Computer (1946)
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First transistor
Bell Labs, 1948

The First Transistor (1948)
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The Nobel Prize in Physics 1956
"for their researches on semiconductors and their discovery of the 
transistor effect"

William B. Shockley          John Bardeen Walter H. Brattain

The Transistor Revolution (1948)
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J. Kilby:
Two transistors laid out onto the same 
semiconductor substrate and connected by 
external wiring

R. Noyce: 
Two transistors laid out onto the same 
semiconductor substrate and connected by on-
chip metallization

The First Integrated Circuit (1961)
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Bipolar logic
1960’s

ECL 3-input Gate
Motorola 1966

The First Commercial Integrated Circuit (1966)
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INTEL 4004 
Microprocessor (1971)
M. Huff – F. Faggin
1000 transistors
1 MHz operation

The First Microprocessor (1971)
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INTEL Pentium IV
Microprocessor 
42 Million Transistors

INTEL Pentium IV Microprocessor
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In 1965, Gordon Moore noted that the 
number of transistors on a chip doubled 
every 18 to 24 months. 
He made a prediction that semiconductor 
technology would double its effectiveness 
every 18 months

Moore’s Law (1964)
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Evolution of Complexity
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Transistors on Lead Microprocessors double every 2 yearsTransistors on Lead Microprocessors double every 2 years

Courtesy, Intel

Moore’s Law for Microprocessors

Pentium IV
Pentium III

Pentium II
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~7% growth per year
~2X growth in 10 years

Die size grows by 7% per year to satisfy Moore’s LawDie size grows by 7% per year to satisfy Moore’s Law

Courtesy, Intel

Die Size Growth
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Why Scaling?

Technology shrinks by 0.7/generation
With every generation we can integrate 2x more 
functions per chip; chip cost does not increase 
significantly
Cost of a function decreases by 2x
But …

How to design chips with more and more functions?
Design engineering population does not double every 
two years…

Hence, a need for more efficient design methods
Exploit different levels of abstraction
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Technology Scaling Models

Full Scaling (constant electric field)
Dimensions and voltages scale together by the same factor λ

Fixed Voltage Scaling
Only dimensions scale; voltages remain constant

General Scaling
Voltages and dimensions scale by different and independent factors
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Constant Field Scaling (Long-channel FETs)
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Constant-Field Scaling (Short-Channel FETs)
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Constant-Field Scaling (Short-Channel FETs)

(R.H. (R.H. DennardDennard, IBM, 1978), IBM, 1978)
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Fixed-Voltage Scaling (Long-Channel FETs)
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Fixed Voltage Scaling (Short-Channel FETs)
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Generalized Scaling Theory
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Scaling Relationships (Long-Channel FETs)
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Scaling Relationships (Short-Channel FETs)
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Source: Intel – ISTAC Meeting 2-2004

Si technology: complexity increasing exponentially
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Power Dissipation
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Courtesy, Intel

Power Dissipation Trend
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ITRS Technology Nodes
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ITRS Technology Nodes
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Medium                  High                  Very HighVariability

Energy scaling will slow down>0.5>0.5>0.35Energy/Logic Op scaling
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CMOS Outlook
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Scaling Roadblocks

Reduced line width → EUV lithography (13 nm)

Tunneling through the gate oxide → high-κ
dielectrics

Poly gate depletion capacitance → metal gate 
Propagation delay (RC) through long-distance 
interconnects → low-κ dielectrics
Threshold voltage scaling and increased leakage 
current
Increased power dissipation per unit area
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Scaling Roadblocks

Increased drain-induced barrier lowering (DIBL)
Reduced subthreshold slope (SS)
Increased threshold-voltage roll-off  
Increased gate-induced drain leakage (GIDL)
Increased statistical fluctuations of the threshold 
voltage due to randomness of the dopant atoms 
Solution: new device architectures



University of Bologna

42G. Baccarani

Outline

Evolution from micro- to nano-electronics
Device miniaturization and scaling theory
The ITRS and its impact on the research area
Evolution of interconnects and packaging
Functional requirements of CMOS logic gates
New device architectures
Device modeling issues
Conclusions



University of Bologna

43G. Baccarani

Advanced Metallization

Courtesy, IBM
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Advanced Matallization

Courtesy, IBM
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Advanced Metallization

Courtesy, IBM
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Packaging
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Packaging
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Packaging
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Requirements of CMOS Logic Gates

High noise immunity → voltage gain
High fan out → power gain
High fan in → I/O isolation
Compatibility of the I/O logic levels
High switching speed
Low power consumption
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CMOS Inverter I/O Characteristics
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CMOS Inverter I/O Characteristics
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Gain vs. Supply Voltage
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CMOS Inverter Delay
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Energy Dissipation per Switch
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Alternative Device Architectures

In view of a number of roadblocks which prevent 
standard CMOS scaling according to the ITRS 
provisions, new device architectures are being 
investigated in order to exploit the ultimate potential of 
the CMOS technology. Among them

Ultra-thin body silicon on insulator (UTB-SOI) FETs
Silicon on insulator double-

gate (SOI-DG) FETs
Tri-gate FinFETs

Gate all around silicon nanowire
(GAA NW) FETs.
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Alternative Device Architectures

DG-MOSFET

Source

Drain

Gate

Cylindrical
Nanowire
MOSFET

FinFET

SOI-MOSFET

CNW-FET
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Bulk CMOS vs. New Architectures

The short-channel effect (SCE) is reduced as the 
gate control increases; thus, DIBL, SS and ∆Vt
improve as we move from bulk to nanowire FETs
for equivalent geometries
For an acceptable DIBL, SS and ∆Vt , the electrical 
oxide thickness (EOT) scaling may be relaxed
Undoped silicon channels prevent statistical doping 
fluctuation, improve mobility and reduce parasitic 
capacitance effects
The presence of two or more channels improves 
the current drive capability of the FETs.
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Bulk vs. New Architectures

In order to fully exploit the potential of innovative 
architectures technology enhancements are being 
investigated  
High-κ dielectrics for gate isolation, to increase the 
insulator capacitance while keeping a thicker oxide 
to prevent tunneling effects 
Metal gate to replace polycrystalline silicon gate, to 
prevent poly depletion at the poly-oxide interface
Tensile and compressive stress to enhance 
channel mobility
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HOT M1 data

~35 % higher pFET Idsat

Developed substrate 
and processes of high 
mobility surface 
orientation for both 
nFETs & pFETs

10S Beacon 
testsite

Transport on (110) Surface

Courtesy, IBM
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Classical solution:

non linear differential equation.

Electrostatics Solution
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QM solution:

ψ is the solution of the Schrödinger problem.
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A coupled Schrödinger-Poisson solution must be worked out.

[ ])(ϕψpfp =
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Electrostatic Solution

Potential
Charge density
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FinFET – Electron Density

QM solution

Classical solution
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Electron concentration in the tri-gate FinFET (hp90)

VG=1 V
Classical solution Quantum solution

40 nm

20 nm0.1

-0.3

0.25

-0.21

NA=6x1018 cm-3
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Electron concentration in the tri-gate FinFET (hp45)

VG=1 V

Classical solution Quantum solution

10 nm

5 nm

10 nm

5 nm
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R=10nm

R=5nm

R=2.5nm

SiO2

Si

CNW-FET – Electron Density
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Current Transport in DG and CNW-FETs

Cylindrical nanowire FETDouble-gate FET

dSi = tSi

The DG-FET represents the best 
trade off between performance 
and manufacturability among the 
different multi-gate proposed 
structures.

The CNW-FET is found to be 
one of the 1D silicon structures 
with the greater potential impact 
on scaled nanoelectronics.
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Simulation Approach: Quantum DD

Error check

Solve the 2D coupled 
Schrödinger-Poisson problem

n, ϕ

Schrödinger

2D Poisson

n
dn/dϕϕ

ϕn
0

Extract the quantum potential 
from the Schrödinger-Poisson 
solution

ϕ, Λ
Solve the 2D drift-diffusion 
equation to determine the 
quasi-Fermi potential

2D Drift-diffusion

ϕn
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Simulation approach: full-quantum transport

Error check

Solve the 2D Poisson equation 2D Poisson equation

ϕ

ϕ0

Solve the 1D Schrödinger eq. 
normal to the interface for each 
node along the channel

1D Schrödinger (closed boundary)

En (z),       ψn (x;z)

The problem is solved by decoupling the Schrödinger equation along the 
transverse and longitudinal coordinate:

Solve the 1D Schrödinger 
equation with open boundary 
conditions

1D Schrödinger (QTBM)

χ (z)

n, dn/dϕ

Charge calculationCalculate the charge density
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Comparison of device performance
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Scaling rules
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The electrical oxide thickness is 
expected to be scaled down to 
0.5 nm for HP22 and HP14:

gate leakage current
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High-κ Dielectrics

tHfO2= εHfO2 / εSiO2 EOT ≈ 6 EOT    

High-permittivity dielectrics are thoroughly being investigated as an 
alternative to the conventional silicon dioxide.

Hafnium oxide is one of the most promising candidates.

A fundamental drawback of high-κ dielectrics is mobility 
degradation.
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Mobility model
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Mobility model for SiO2 and HfO2

Quantum

HfO2 SiO2
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Device performance: DIBL and SS
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Capacitive contribution
Both the vertical electric field in the channel and the fringing field in the 
oxide play a role in determining the device performance.

The lateral capacitance is 
expected to be given by:

If HfO2 is used at a fixed EOT:

with

δ is the average length of the electric field lines originating from drain and ending 
onto the channel charge.
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Charge distribution and potential profiles: DG HP45 
HfO2SiO2

VGS=VDS=VDD VGS=VDS=VDD
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Surface potential within the channel: DG HP45 
VGS=VDS=VDD
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QDD

quantum bal.

QDD

quantum bal.

ON current vs. gate length
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Conclusions

Microelectronics has evolved to become Nanoelectronics

Moore’s law has been followed for nearly 4 decades mainly by 
device miniaturization

Conventional scaling now provides diminishing returns

New materials and new device architectures are necessary in 
order to comply with technology roadblocks

Strong mobility improvements are possible by using strained 
channel materials, with encouraging effects on the on-current

Device simulation requires a deeper understanding of the 
underlying device physics 


